

Workshop Implementation of the EC 8-3:2005 Assessment and interventions on buildings in earthquake prone areas

A pilot application of EC8-3. Reflections and comparisons with the GCSI

Andreas J Kappos, Professor of Civil Engineering, City University London

Athens, 12 April 2013

Eurocode 8 – Part 3 Overview

- Relatively recent document, intended to be performance- and displacement-based
- 'Flexibility' to accommodate the large variety of situations arising in practice and in different countries
 - > Arguably major advantage, also major weakness!..
- Logically structured, but (on drafters' own admission, see Pinto 2011) missing the support from extended use
 - improvements to be expected from future (and present?) experience
- Normative part covering only material-independent concepts and rules; verification formulae are in non-mandatory Informative Annexes
- ❖ Very limited application, mainly in academic/background studies
 - > the GCSI has enjoyed much more extensive application

A pilot application of EC8-3. Reflections and comparisons with the GCSI

Performance requirements in EC8 – 3

Hazard (return period of the design spectrum)	Required performance					
T _R =2475 years (2% in 50 years)	Near Collapse (NC) (heavily damaged, very low residual strength & stiffness, large permanent drift but still standing)					
T _R =475 years (10% in 50 years)	Significant damage (SD) (significantly damaged, some residual strength & stiffness, non-strutural comp. damaged, uneconomic to repair)					
T _R =225 years (20% in 50 years)	Limited damage (LD) (only lightly damaged, damage to non- structural components economically repairable)					
T _n values above same as for new buildings. National authorities may select						

 $T_{\rm R}$ values above same as for new buildings. National authorities may select lower values, and require compliance with only two limit-states

This presentation

- ❖ Application of EC8-3 to a realistic building, representative of 1970's European practice
 - > the 'SPEAR building' (designed by Fardis et al.)
- ❖ Application of all commonly used analysis methods for assessment
 - > Lateral force (elastic) analysis
 - > Multi-modal response spectrum analysis
 - > q-factor approach
- ❖ Application also of GCSI provisions, wherever different (m-method)
- ❖ Identification of difficulties in implementing EC8-3
- Comparisons with the GCSI
- Conclusions and reflections on some issues and future trends

A pilot application of EC8-3. Reflections and comparisons with the GCSI $\,$

Key data for the building

- Specimen tested within the frame of the SPEAR project
- ❖ 3-storey reinforced concrete (R/C) building
- ❖ Broadly based on Greek codes of 1954 and 1959
 - > deemed representative of 1970's European practice
- Frame structure, no special seismic provisions and detailing
- Intentional weak points:
 - > irregular in plan, torsion problem
 - ➤ indirect beam supports
 - > eccentric connections at some joints

Key data for the building (contnd)

Performance requirements and seismic actions

- ❖ Significant Damage ↔ 10% in 50 years seismic action
- Knowledge level: KL3 (full knowledge), not common in actual buildings (as opposed to Lab specimens)
 - \rightarrow confidence factor: $CF_{KL3}=1$
- ❖ Seismic hazard zone: I (a_q=0.16g)
- Ground conditions: C (dense sand, gravel or stiff clay)
- ❖ Importance class: II (γ_I=1.00)

A pilot application of EC8-3. Reflections and comparisons with the GCSI

Assessment methods used

- > Lateral force (elastic) analysis
- > Multi-modal response spectrum analysis
- > q-factor approach

Seismic load combinations: $\begin{bmatrix} E_x + 0.3E_y & \frac{1}{15} \\ E_y + 0.3E_x & \frac{1}{65} \end{bmatrix}$

Assumed stiffnesses: EI_{ef} =0.50 EI_{q} (EC8 §4.3.1 applies)

- important difference from GCSI (and ASCE 41-07)!
- \succ 'hidden' in §A3.2.4(5) referring specifically to DL state (not SD), that if deformations are verified, then EI_{ef}=M_yL_y/30_y

Lateral force (elastic) analysis

- Range of applicability (according to Eurocode 8 Part 1):
 - a) period criteria $T_{l} \leq \begin{cases} 4T_{c} = 2.4s \\ 2.0s \end{cases}$
 - b) Regularity in elevation
 - \rightarrow Additional requirement in EC8–3: ρ_{i} = D $_{i}$ / C $_{i}$ $\,$ < 2.5 for ductile members

Multi-modal response spectrum analysis

- No restrictions in Eurocode 8 Part 1
- Additional requirement in EC8–3: $\rho_i = D_i / C_i < 2.5$ for ductile members

q-factor approach

- q= 1.5 for reinforced concrete buildings
- Verifications based on action effects derived by reduced (×1/q) spectrum, rather than on ρ_i
- Elastic static analysis

A pilot application of EC8-3. Reflections and comparisons with the GCSI

Flexure and shear verifications

- Brittle components/mechanisms
 - ρ_{i} = D $_{i}$ / C $_{i}$ $\,<$ 1.0, $\,$ D $_{i}$ \rightarrow from analysis (V $_{Ed})$
 - > C_i based on mean values of material strengths (M_{Rm})
 - $\rho_i > 1$, D_i from capacity design

- Ductile components/mechanisms
 - → Verification based on deformations!

Simplified column check for biaxial flexure (M_v, M_z, N)

biaxial flexure is reduced to uniaxial one [Eurocode 2 Handbook]

			z-axis	y-axis	
$\frac{hM_{yi}}{bM_{xi}} \ge 5 \text{ OR } \frac{hM_{yi}}{bM_{xi}} \le 0,2$	Consider	(i)	0	M_{y}	
	both	(ii)	M_z	0	
In all other cases:	$if \frac{M_y \cdot h'}{M_z \cdot b'} \le 1$		$M_z + \frac{\beta h' M_z}{b'}$	0	
	$if \frac{M_{y} \cdot h'}{M_{z} \cdot b'} \ge 1$		0	$M_z + \frac{\beta h' M_y}{b'}$	

- the above ${\rm M}_{\rm yr}$ ${\rm M}_{\rm zr}$ are compared with corresponding (uniaxial) flexural strengths

A pilot application of EC8-3. Reflections and comparisons with the GCSI

Flexural verification based on deformations (§A.3.2.1)

- $\boldsymbol{\diamondsuit}$ Existing software packages do \underline{not} provide chord rotations (0) as output
 - \succ how can θ be calculated from given joint rotations?

general case for calculating θ from joint rotations R_y on plane x-z

chord rotation at end i: $\theta_i = \left| R_{yi} - \alpha_{ij} \right|$ where

$$\tan a_{ij} = \frac{z_j + u_{zj} - (z_i + u_{zi})}{x_j + x_{zj} - (x_i + u_{xi})} \Rightarrow a_{ij} = \arctan \frac{z_j + u_{zj} - (z_i + u_{zi})}{x_j + x_{zj} - (x_i + u_{xi})}$$

 \diamond Verification: checking of θ against fractions (dependent on PR) of

$$\theta_{um} = \frac{1}{\gamma_{el}} 0.016 \cdot \left(0.3^{v}\right) \left[\frac{\max(0.01; \omega)}{\max(0.01; \omega)} f_{c}\right]^{0.225} \left(\frac{L_{v}}{h}\right)^{0.35} 25^{\left(\alpha \rho_{xx} \frac{f_{yy}}{f_{c}}\right)} \left(1.25^{100\rho_{d}}\right)$$

Critical joint verification: Diagonal compression

a) For internal beam-column joints:

$$V_{jhd} = \gamma_{Rd} \big(A_{s1} + A_{s2}\big) f_{\gamma d} - V_c \leq \eta f_{cd} \sqrt{1 - \frac{v_d}{\eta}} b_j h_{jc}$$

b) For external beam-column joints:

$$V_{jhd} = \gamma_{Rd} A_{s1} f_{yd} - V_{c} \le 0.80 \eta f_{cd} \sqrt{1 - \frac{V_{d}}{\eta}} b_{j} h_{jc}$$

 $\succ\,$ Mean values of material strengths, modified for CF_{KL3} and γ_{M}

Results: Distribution of $\rho_i = D_i/C_i$ (flexure)

 $\rho_{\text{max}}/\rho_{\text{min}}{>}{>}2.5~(\rho_{\text{min}}{=}1.002~\text{for}~\rho{>}1) \rightarrow \text{elastic methods not allowed!}$

			Linear Model (LM)		Nonlinear Model		q-factor approach	
			Demand	Capacity	Demand	Capacity	Demand	Capacity
	Type of element or	Duetil e	= D _i /C _i value. From analysis. Use mean value in model. Verification accepted): From analysis.	checking of ρ_i (es): In terms of sestrength, so Use mean so values of properties, so (if LM) In terms of deformation. Use mean values of properties in the solution of th	In ter of stren Use : value prop divid by C and t parti	strength. Use mean values of		In terms of strength. Use mean values of properties
	(e/m)	Brittle	from equilibrium with strength of ductile e/m. Use mean	In terms of strength. Use mean values of		In terms of strength. Use mean values of properties divided by CF	In accordance with the	divided by CF and by partial factor.

'θ-method' (θ_{req} <3/4 θ_{u} , based on EI_{ef} =0.50 EI_{g}) \rightarrow No failures!

% of beam failures in flexure (E_y +0.3 E_x)

'θ-method' $(\theta_{req} < 3/4\theta_u)$ \rightarrow No failures!

% of column failures under M, N (E_x +0.3 E_y)

% of column failures under M, N $(E_y+0.3E_x)$

% of beam shear failures $(E_x+0.3E_y)$

q-approach

Comparative results for combination E_x +0.3 E_y

(lateral force and dynamic analysis based on m-method)

Comparative results for combination E_x +0.3 E_v

(lateral force and dynamic analysis based on m-method)

Comparative results for combination E_y +0.3 E_x

(lateral force and dynamic analysis based on m-method)

Comparative results for combination $\boldsymbol{E_y} \! + \! o.3\boldsymbol{E_x}$

Beam-column joint verifications

% of joints failing in diagonal compression $E_x + 0.3E_y$

% of joints failing in diagonal compression E_y +0.3 E_x

Comparisons with the GCSI (θ vs. m method, lateral force)

average D/C ratios for columns (E_x+0.3E_y)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

1st 2nd 3rd building

CGSI (and ASCE 41-06) m-method results in substantially more unfavourable results than EC8-3!

Comparisons with the GCSI (θ vs. m method, response spectrum)

again, CGSI (and ASCE 41-06) m-method results in substantially more unfavourable results than EC8-3!

Comparisons with the GCSI (θ vs. m method)

What are the reasons for the discrepancy?

- verifications should be carried out for stiffnesses compatible with θ_u , $\theta_y \rightarrow$ important, since for old buildings $EI_{ef} << 0.5EI_g$ (here $0.5EI_g$ was used in all cases, as allowed by §4.3 of EC8-3)
- different fractions of allowable deformation are specified by each code (e.g. for SD, θ_d =3/4 θ_u by EC8-3, =0.5(θ_u + θ_v)/ γ_{Rd} by GCSI)
- in calculating m approximate L_v≅L/2 is assumed for beams and columns, whereas θ corresponds to the exact L_v
- m-factor used to reduce seismic action effects only, θ includes contribution from gravity loads as well
 - \triangleright for same EI_{ef} and θ_d , the two procedures give the same outcome only in a cantilever, undeformed under gravity loads

Conclusions and reflections

- ❖ Analysis methods work as expected (same as in the GCSI)
 - > Dynamic response spectrum method leads to most favourable results
 - > q-approach leads to most unfavourable results
- * Realistic structures do not satisfy ρ_i <2.5 requirement for elastic analysis (static+dynamic)
 - > need for inelastic analysis! (this also true for the GCSI)
 - > from GCSI based studies, pushover analysis more favourable results!
- Preferable to use procedures prescribed in more detailed and comprehensive codes (like the GCSI)
- Existing software packages do not provide chord rotations, while θ method (for flexure) is typically more favourable than m method!
- Shear verification (capacity-based) not influenced by analysis method
- - > things equally (actually, a bit more) complex in the GCSI!

A pilot application of EC8-3. Reflections and comparisons with the GCSI

Thank you, hope I have stirred some discussion!

websites: http://www.city.ac.uk/engineering-maths/staff/professor-andreas-kappos

http://ajkap.weebly.com/english.html

e-mail: Andreas.Kappos.1@city.ac.uk